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SUMMARY

The shape of the interface is determined between plasma flux with frozen-
in magnetic field and the cavity filled by the magnetic field of a plane dipole.
The cavity is found to be closed, and suggests a crescent with a hemispherical
protuberance on the convex side, turned toward the flow of plasma.

If the external field is parallel to the velocity vector of the flow, the
interface curves or bends inside in polar regions and in the posterior part
near the equatorial plane. When the outer field is directed perpendicularly
to the velocity, the hollows are absent at poles and in the posterior part,
and the boundary of the tail is constituted by a circle.

*
* *

In the Chapman-Ferraro model the cold plasma is separated from the cavity
filled by the magnetic field by a thin current layer [1 - 3]. The problem of
the shape of this interface offers great interest in connection with the pro-
blem of solar wind interaction with the geomagnetic field. The determination
of the exact shape of the interface is beset with great mathematical difficul-
ties. Various two-dimensional models were considered in a series of works:
the shape of the interface in case of plasma flow past an infinite conductor
with current is determined approximately in [4], and the exact solution of the
method of conformal transformation is given in [5, 6], the shape of the inter-
face between plasma flow and the magnetic field of a plane dipole is found
exactly in [7 - 9]. Methods for the solution of the corresponding three-dimen-
sional problem have been worked out only lately; the self-consistent field
method [10] and the method of technique of moments [11]. The three-dimensional
problem on the shape of magnetosphere boundary at isotropic external pressure
is resolved by the integral equation method in [12] and by the technique of mo-
ments in [13], and the corresponding two-dimensional problem - by the method
of conformal transformation in [14, 15].

(*) VLIYANIYE VNESHNEGO MAGNITNOGC POLYA NA FORMU GRANITSY MEZHDU POTOKOM
PLAZMY I POLOST'YU S PLOSKIM DIPOLEM.



In these models the interplanetary magnetic field, of 5y intensity, is
not taken into account [16, 17]; its pressure is negligibly small on the day-
time side, where the main acting force is the dynamic pressure of the super-
Alfvén flow. However, on the night side of the magnetosphere the interplane-
tary magnetic field may exert a substantial influence on the position and shape
of the magnetosphere tail because of rapid drop in the value of the dipole
field [18]. Because of the complexity of the problem, we shall consider a two-
dimensional model in which only the dynamic pressure of the flux, the external
field for the plasma outside the cavity, and the pressure of the magnetic field
with the singularity of plane dipole type inside the cavity are taken into
account. The gas-kinetic pressures inside and outside are supposed to be iden-
tical, for a rapid plasma diffusion through the interface takes place as a con-
sequence of a series of instability mechanisms. The problem is resolved in the
first approximation of the generalized self-consistent field method [10].

It is assumed that the plane dipole is directed perpendicularly to flow
velocity, and two limiting cases of interplanetary field orientation are consi-
dered: along and perpendicularly to flow velocity. In the present model, we
discounted certain factors exerting a substantial influence on the shape of
the magnetosphere tail, and leading to the open magnetosphere model [19, 20}
that finds experimental corroboration [21], and on account of this the results
of our work fail to provide an answer to the question of the true shape of the
magnetosphere tail.

STATEMENT OF THE PROBLEM.  Assume that a plane magnetic dipole is situa-
ted at coordinate origin and directed along the axis y, and that the plasma
velocity is directed along the axis x. The boundary condition is written in
the form -

In X Bi|® — |n X Be|® = 8apa(n-¥)*. (1)

llere B, B. are respectively the inner and the outer field; po is the
dynamic pressure maximum; f is the normal to the surface; v 1is the unitary
velocity vector. Moreover, we consider, as usual, that the normal component
of the magnetic field at the interface is zero.

If the surface is given by the equation F(r,¢) = r-— R{g) == 0, the pro-
jections of the normal, of the unitary velocity vector and of the magnetic
field on unitary orts of a cyllndr1cal system of coordinates will be presented
in the following fashion:

1 al ~
n=a«a {1 - v == {c0s ¢, —-sing}.
'Jq

2 :
B,=— {~m q.cos¢}, DBy== By{cosq, —sing]}, (2)
1 / dR 3'|“"f'-‘
=1 —
¢ [1 et '1(p>

llere B, is the unperturbed field of the plane dlpole B; is the outer
magnetic (ield, parallel to the velocity. In the case when the outer magnetic
field is perpendlcular to flow velocity, we have

By = U, {zinq, cosq}. (3)



It the shape of the surface is known, it is possible to find magnetic

: Clelds inside as well as outside. TIf to the contrary, the Ciclds are known,
the surface may be determined from (1). However, neither the fields B. B, .nor
the surface are known in (1). To overcome this difficulty we applied the

' method of sclf-consistent field proposed in [3]. Because of the presence of
the outer ficld I the ceneralization of this method is prerequisite. We shall
consider in the first approximation that the interface is plane and we shall
assume that the field B; induced by surface currents, constitutes the sum of
the fields B:and B. whereupon the field B, compensates the dipole field out-
side, and the field B.-the unperturbed outer field inside. The plane superfi-
cial current creates on either side of the plane magnetic fields, identical
1n magnitude, but opposite in direction. This is why, in the first approxima-
tion of the self-consistent field method we have

-- from the inside of the interface : B.==B"4+ B+ B,
— from the outside of it : B.= —--B 4+ B+ B.

Inasmuch as
- B: —'r B, == 0. ])'_‘ '—:- Bo == 0,
we find

B; = 2B,., B.=2B, (4)

Substituting relations (4) into (1), we obtain in the first approximation
the following equation:

1 dry: 1 dr\? 1 dry
—:‘ (Cn;q‘——»f sillq>E;> -— ﬁ.-,'-'(siu {P-’r—r cosq:i:{— = (COS(F'*""’:S"”P'ZP . (5)

*

The unit of length 7y = (2W*/apx?)'*is introduced here; the dimensionless
quantity f. == B,/ (2ap,)": characterizes the outer field, which is considered to
be oriented along the wind velocity.

Performing the substitution of variables y = r?2, x = tg¢, Eq.(5) will
take the form

| 1+ a2 xy’)'*’ ( 14 22 y’>2 ( 1+ :ry’)z
(1= g4y =(1 Y.
yz( 2y BT Ty

In the case, when the field By, is perpendicular to the velocity, we shall
obtain instead of (6) the equation

1 . 14-2° zy'\* __ . 422 2y’ N2
(;{‘&J(L‘ 2 y)-_(br 2 y)'




SUAPE _OF THE INTERFACE WITH OUTER FIELD PARALLEL TO VELOCITY. Eq.(6)
is sufficiently complex, thus making it practical to break the interface
down to five regions (Fig.l). The first region (segment AB) spreads from
the flow's stagnation point to the neutral point. The second region (BC)
is the part of the interface between the neu-
tral point and the center of the cavity. The
third region (segment CD) is the portion bet-
ween the center of the cavity and the point,
at which the plasma flow hits directly the
interface. The fourth region (DE) is the
part of the tail subject to the action of the
solar wind. The fifth region (segment EF) is
the tail, protected from the action of the
flow by the protruding fourth region. Eq.(6)
mav be simplified in each of the regions.

First Region. Here we may consider Bj?as a small parameter and search
for the solution of (6) in the form 4 J-—-yOJ—ﬁoy, Then

1 Y1422
Yyo=1, y1=——
2 =z

—_— z
In(z + Yz 1—-———-———___],
[ (z+ +1) V1+$2 (8)
where we assumed during the determination of the constant in the solution that

y; = 0 at x = 0, for at that point the outer field vector lacks the tangential
component and exerts no pressure upon the surface.

The boundary of this region is the neutral point at which the surface (8)
becomes parallel to the velocity. It is easy to see that at the neutral point
x = ~-2 /Bp. It is well known that in the first approximation of the self-
consistent field method, the neutral point, in the absence of outer field, is
located on the polar axis [22], whereas in subsequent approximations it is
displaced in a direction toward the Sun by approximately 20° [10]. Therefore,
the accounting for an outer field parallel to velocity leads to a supplementary
shift of the neutral point in the same direction.

Second Region. Here the dynmamic pressure of the flow is absent and Eq. (6)
takes the form

=) ==+ ). ®

Taking into account that z>1{, it is practical to search for the solution
in the form of a series by inverse powers of x :

y= Z anz™,
=, (10)
where ay = —2Bgai?, a: = —ao+ 3fa’, us = 2Boac®(1 —*/3fe’ac’). The coefficient ay

may be found by joining the solutions in the neighboring regions,



Third Region. The solution in the third region is given by formula (10),
in which the sign before B,is reversed (here x > 0, so that in the second and
third regions the interface is symmetrical relative to polar axis).

Fourth Region. 1In this region 802 is also a small parameter; however,
the zero solution

Yo = (M) (11)

z

that is, the solution in the absence of the outer magnetic field differs from
the zero solution in the (irst region; in connection with this the finding of
v, becomes a more complex problem (the solution is sought for in the form

¥ == Yo+ Bo’y1)-
Substituting (11) into (6), we obtain for y, the following equation:

W _H“EﬂjH'—I' IO it £ s ol BV e o +1)‘ (12)
z(1 -+ z%) 227(1 -+ 22

The solution of (12) may be representcd in the form

'Vi+x~(]’1-l—z-+1)[ B8yt T (Yi+zz;-1)i7]- (13)
8(Y1+2*—1) Vi (Y1 + 22— 1)? z(1+22)°

For z>>1 the value of y is

z 13
¥ z-—(C—}—-—);

8
joining the solutions in neighboring regions, we obtain C_—zﬁoln.?__ﬁﬂo‘
For r<7{ Bo
4 z? 2 47In2—33Inz
~ -_—— L/ ~ —— . 14
Yo~ z + 2 4 ’ 71 26 + 952 ( )

Let us find the point, at which the tangent to the interface is parallel
to flow velocity; assuming that at that point xy < 1, and utilizing (14), we
arrive at the approximate equation

— 503(341n2+33+651"°1—) 7+ — 24p2 = 0. (15)



8
If B, is very small, we have approximately 7y = V2462 Typical for the
solar wind is the value B, = 0.1, and for such a 8, the rejected middle term
in (15) may result to be essential. However, detemmining graphically the root
of Eq.(15), we may find the assurance that the accounting of this term changes
very little the value of the root found by the approximate formula.

Fifth Region. Here the dynamic pressure does not act upon the surface and
Iiq.(6) thus takes the form

=) (= 5, a16)

1 — Bozy
(14 2%) (Boy +2)

or ..y_’._-—_:z
y

We shall search for the solution of this equation by the method of conse-
cutive approximations, selecting for the zero approximation the quantity
Ylx=x. = yo at the initial point of the fifth region, x = Xx,.

The formal solution will be written in the form

1 — fozy ]

= xpf —2
yoe\P[ S T+ 2) (poy F 2) -dz

x

whence in the first approximation

Xe

Yy = !/oexp[ —2 S
or x

1 — Boyoz dz]
(z - Boyo) (1 + z2)

_ (=4 Boyo)? 1+ z® (17)
= Yo .
(o + Boyo)? 1+ 22

Y1

SHAPE OF THE INTERFACE WHEN THE OUTER FIELD IS PERPENDICULAR TO VELOCITY.

First Region. As in the preceding case we must consider g2 as a small pa-
rameter. It may be seen that the unique solution of Eq.(7), not having a sin-
gularity on the polar axis, 1s

‘ 1
yo=1, h=—"=9" (18)

The Second and the Third Regions are absent.

Fourth Region. We shall seek the solution in the form of series by the
small parameter By? . Substituting the sero solution (11) into (7), we obtain

AN




2v1+$2'—'12 _1 (1+V~1+12)6 (19)
(1420 2 (1423

vl +u

of which the solution 1is

=w+ﬁm+ﬂ+”p A5t (1+2%)?

———— 1 .
2(VIF 22— 1) + ] (20)

{

fitamia—1 | (itrz—1)

As x » «= the solution mus%?finite; this is why we must consider C = 0.
The solutions of first order relative to 8,2 in the first and fourth regions
then have a discontinuity of first kind on the polar axis, result which is by
no means unexpected. It is well known that in the first approximation of the
self-consistent field method there are points, at which the solutions of
Eq. (1) do not exist if the exact value of the magnetic field is substituted by
an approximate one [10]. The following approximations must liquidate this
discontinuity. If the magnetic field B, is oriented strictly perpendicularly
to the flow, the discontinuity vanishes too and the constant C is not zero.

The second singularity of the case considered, when the velocity vectors
and the outer fieid are perpendicular, is the absence of such a point in the
fourth region, where the surface is parallel to the velocity. Indeed, had such
a point existed, the dynamic pressure would be absent at it, both of the flow
and of the outer magnetic field, since the velocity is parallel to the tangent
to the surface, while the outer magnetic field has no tangential component.

As a consequence, the terms

2 oy 2 y

P Gl o) 1_l~(1+.:r:2)ar.t/’

’

of (7), would become zero concomitantly, which is impossible.

Fifth Region. The dynamic pressure of the flow is absent and Eq.(7)
takes the simple form

(;}2—-—502)( 1—1"?:’2 zi’f = 0. (21)

It is scen that the unique solution having any physical sense is the
circumference

y= ilﬁo- (22)

Therefore, the boundary of the fourth region is the point of intersection
with the circumference (22).



We represented in Fig.2 the upper half of the interface at By = 0.1.
The solid curve corresponds to the case of the outer ficld parallel to the
velocity, and the dashed curve — to the case of the outer field perpendicu-
lar to the velocity. The unit of length is the distance to the interface at

flow stagnation point.

x (0,5] |'0661n—) Zi——' 0...;-1 23
’ x ’ ’ ( )

If we reject the second term from the left, x, = 0.84. The graphical so-
lution of (23) gives x3 = 0.96. This result
was utilized during the construction of the
curve in Fig.2.

It should be noted that the results obtained
in the present work are not applicable for the
investigation of the structure of the magneto-
sphere tail, for in reality, besides the magnetic
and dynamic pressures other forces act in the tail Fig.2
{19, 23], of whicbh the nature is still not quite
well ascertained. Moreover, the small value of
the distance, over which the tail of the interface closes, is found to be in
contradiction with the estimate of cavity length behind the magnetosphere,
(~100Ry ) , into which the solar plasma does not reach because of the high
“lach number [19]. Experimental measurements of magnetic field intensity in the
macnetosphere tail have shown that the interface does not close at least up to
50 Rg , and the magnetic field is directed radially and changes sign at transi-
tion through the neutral layer situated in the equatorial plane [21].

APPENDIX

RIGOROUS SOLUTION OF EQ.(7). This equation may be represented as follows:

VBl 2

Y MRty x4

where § = 1 at the forward part of the interface, § = —1 at the part of the
tail subject to dynamic pressure of the flow, and 6 = 0 in the part of the tail
not directly hit by the flow. The rigorous solution of this equation has the
form

2%
o arc sin oy +

T
2ln———+C=Ihy+

Y142 B2 4o
L 1 8 1B + 0711 — Poy? + & +Bo* (1—y Vo’ +5%) ]
—L T I T L .
C Bot 0 [ (1 — g VBof + 82 8 TR + 62 Y1 — Bo'v™ -+ 82 +Bo* (1-+y VB +67)

%% T HE END xxxx
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